Laser Manipulation of Fracture Systems for Carbon Sequestration

Project Number: FWP 100249

Andrew M. Kiss

SLAC National Accelerator Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

Presentation Outline

- Introduction and Project Overview
- Benefits to the Program
- Technical Status
 - Sample Preparation
 - Characterization Tools
- Synergy Opportunities
- Accomplishments to Date
- Summary

Project Overview: Introduction

- Is it technically feasible to use lasers to precisely cut <u>and</u> weld shale?
- Potentially transformative nearfield down-bore technology
- SubTER pillar: Permeability Manipulation and Fluid Control
- Characterize morphological and chemical changes in shale as function of lithology and power

IEAGHG, "Caprock Systems for CO₂ Geological Storage", 2011/01, June, 2011. M. A. Celia et al., "Modeling Critical Leakage Pathways in a Risk Assessment Framework: Representation of Abandoned Wells", Fourth Annual Conference on Carbon Capture and Sequestration DOE/NETL, May 2-5, 2005.

Project Overview: SLAC-Foro Collaboration

- Foro: Innovator in downhole laser drilling
 - Transmit laser power miles through optical fibers
 - Reducing stimulated Brillouin scattering
 - Optical slip ring
- Foro has demonstrated laser cutting/drilling for installing and decommissioning wells
- SLAC: Advanced "4D" microstructural characterization

Project Overview: Laser Material Removal

Figure 1. Foro Energy Drill bit combining high power laser energy with PDC bit technology.

M. S. Zediker, "High Power Fiber Lasers in Geothermal, Oil & Gas," *Proc. Of SPIE* Vol. 8961, 89610D-1 (2014).

FIG. 1. Annotated photograph of the laser drilling system.

Z. Xu et al., "Specific energy for pulsed laser rock drilling," *J. Laser App.*, **15**, 25 (2003).

Project Overview: Laser Material Removal

M. S. Zediker, "High Power Fiber Lasers in Geothermal, Oil & Gas," *Proc. Of SPIE* Vol. 8961, 89610D-1 (2014).

Z. Xu et al., "Specific energy for pulsed laser rock drilling," *J. Laser App.*, **15**, 25 (2003).

Project Overview: Manipulating Permeability

- What does the laser exposure do to the rock?
- How does it affect the morphology?
- Is there an effect of mineralogy or geochemistry?

• Can laser exposure be used as a way of manipulating the rock permeability?

Z. Xu et al., "Specific energy for pulsed laser 7 rock drilling," *J. Laser App.*, **15**, 25 (2003).

Project Overview: Hypothesis

- Hypothesis: Laser exposure can be used to modify rock microstructure in a controlled fashion
- Consider changes in the morphology; contrasting shale composition

 Mineralogy: Green River and Marcellus
- Use micro-CT and FIB-SEM to quantify local changes in porosity, permeability, and mineralogy

Benefits to the Program

- Goal: Understand how laser fluence can affect microstructure and be used for tailoring properties such as permeability.
- Potentially transformative technology
- Using laser light, the morphology of the rock can be modified using a procedure that is
 - Localized
 - Well controlled
 - Specific to the mineralogy

Project Tasks

Technical Status: Samples

Green River Shale

Marcellus Shale

- High carbonate content
- High clay content

Technical Status: Preparing Samples

- Green River and Marcellus shales
- 1.000 inch samples will be cored from collected source rock
- A 3/8 inch hole will be laser drilled
- 3 mm cores will be extracted to examine
 - Effect of depth along drilled hole
 - Changes along radius

Technical Status: Laser Exposure

Laser Focused on Test Sample

Laser Firing 3kW on Sample (4.2 kW cm⁻²)

Samples exposed between 4 to 12 s

Lased Sample

Content from Foro Energy 13

Technical Status: Laser Exposure

S

Marcellus Shale

Green River Shale

Technical Status: Microstructure and Porosity Characterization

- Porosity
 - Synchrotron-based microCT
 - Lab-based microCT
 - FIB-SEM
- Mineralogy
 - SEM-EDS
- Surface morphology
 - SEM

Technical Status: microCT

- Andor Zyla 5.5 with 4x and 10x Objective Lens
- Pixel size: down to 650 nm
- FOV: 1.33 x 1.33 mm or 3.33 x 3.33 mm
- Ability to use monochromatic or white light
- Quantitatively and non-destructively measure local properties such as porosity

Synergy Opportunities

- Goal: Understand how laser fluence can affect microstructure and be used for tailoring properties such as permeability
- Identifying locations of fractures for sealing
- Creating customized perforations for optimal and higher yield hydraulic fracturing
- SubTER pillar: Permeability Manipulation and Fluid Control

Accomplishments to Date: Tasks and Milestones

- Task 1. Project Management
 - Project initiated (March 1, 2016)
 - Risk assessment complete
- Task 2. Experimental Design
 - Literature search complete
 - Detailed experimental plan established
- Task 3. Initial Characterization
 SEM training
- Task 4. Laser Exposure
 - Samples acquired and cored
 - Laser exposure at Foro
- Task 5. Post-treatment Characterization

complete complete complete in progress complete complete complete complete in progress

Summary

- Progress to date
 - On schedule
 - Samples have been treated and ready for characterization

- Future Plans
 - Full characterization of samples before/after treatment
 - Understand how exposure affects morphology
 - Determine if it is feasible to weld shales

Thank you!

Laser Firing 3kW on Sample

Appendix

Organization Chart

- Andrew M. Kiss Postdoctoral Scholar
- John R. Bargar Senior Scientist
- Mark Hartney Chief Technology Officer

- Danny Wolfe SVP Engineering
- Daryl Grubb Director Laser Processing

Gantt Chart

Task	Title	Month of project																
		2016											2017					
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	
1	Project Management																	
1.1	Project management	М																
1.2	Quarterly research performance reports					М			М			М						
1.3	Final technical report														м			
2	Experimental Design																	
2.1	Literature search																	
2.2	Establish a detailed experimental plan	М																
3	Initial Characterization																	
3.1	Fracture surface chemistry																	
3.2	Mineralogy																	
3.3	Porosity																	
4	Laser Exposure																	
4.1	Samples exposed to laser fluence																	
4.2	Returned to SLAC for characterization																	
5	Post-treatment Characterization																	
5.1	Fracture surface chemistry																	
5.2	Mineralogy																	
5.3	Porosity																	
6	Publish																	
6.1	Draft manuscript																	
6.2	Review manuscript																	
6.3	Manuscript submission																М	

Bibliography

Invited Presentation

 "Characterization of Chemical and Morphological Changes in Shales Using Synchrotron Based X-ray Imaging," Stanford Center for Carbon Storage Annual Meeting, Stanford University, May 11, 2016.

